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Abshnct. We introduce a dynamic fuse model for the damage done m a metal thin film by 
electromigration, and study the growth of a single crack that is perpendicular to the direction of 
the ambient current. As the cradr length 2r grows large, the velocity of the crack tips v scales 
as u ( x )  -.xu. We argue that the value of the exponent OL is exactly 2. This result is in excellent 
agreement with our numerical work. 

There is currently much interest in random media that are changed irreversibly by an applied 
field. These so-called ‘breakdown problems’ play an important role in non-equilibrium 
statistical physics and materials science. ‘Bum out’ of random fuse networks 11-51, 
dielectric breakdown [2,5-121, the onset of superconductivity in granular superconductors 
[13-171, and the fracture of brittle materials [18-251 have all been studied using breakdown 
models. 

Most of the progress on breakdown models has come from Monte Carlo simulations. 
However, in an important series of papers, Duxbury and co-workers developed a ‘Lifshitz- 
type’ theoq~ for the breakdown voltage of a two-dimensional random fuse network in the 
l i t  in which the insulating bonds are initially dilute [ 2 4  The first step in constructing 
this theory was to determine the breakdown voltage of a line defect (or ‘crack‘) oriented 
perpendicularly io the direction of the ambient current. 

The breakdown models mentioned so far are quasi-static, since failure occurs 
instantaneously when the applied voltage (or stress) is sufficiently large. The first m l y  
kinetic breakdown model was introduced by Sornette and Vanneste 126,271. Their model 
describes the failure of fuse networks that burn out due to Joule heating. In their model, 
the temperature T of a fuse with resistance R carrying current I obeys the equation 

dT/dt = Rlllb - aT (1) 

where a and b are non-negative constants. The term RIIlb accounts for a generaiized 
Joule heating of the fuse; for real fuses b = 2. The second term on the righi-hand side 
of (1) is the rate that heat is lost to the substrate. When the temperature of a fuse reaches 
a given threshold, it burns out irreversibly and becomes an insulator. The Monte Carlo 
simulations of Vanneste and Somette revealed a rich phenomenology of fracture patterns 
and the existence of a novel dynamical memory effect [26,27]. 

There are many failure processes in nature, and we expect that all will display time- 
dependent effects under certain circumstances. For example, when an electrical current 
passes through a thin metal film, collisions between the conduction electrons and the metal 
ions lead io drift of the ions. This process is known as electromigration [28-301. If there 
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is a divergence in the flux of ions at a point, a void or hillock forms 1311. Voids grow and 
overlap until conduction ceases and electrical failure is complete. Electromigration can lead 
to the electrical failure of interconnects in VLSI circuits in relatively short times, reducing the 
circuit lifetime to an unacceptable level 1321. It is therefore of great technological importance 
to understand and control electromigration failure of thin films. Electromigration-induced 
damage in a polycrystalline metal film is an irreversible kinetic process, since the damage 
cannot be repaired simply by reversing the current 

In this paper, we introduce a kinetic breakdown model of electromigration failure. As a 
first step towards understanding the failure process when many cracks are present, we study 
the growth of a single crack that is perpendicular to the direction of the ambient current. 
As the crack length 2r grows large, the velocity of the crack tips U scales as u(x) - x u .  
We argue that the value of the exponent (Y is exuctly 2. This result is in excellent agreement 
with our numerical work, and is the first analytical result obtained on a dynamic fuse model. 

We adopt a simple coarsegrained description of a disordered polycrystalline metal film. 
Consider a regular square grid of sites in which each nearest-neighbour pair of sites is 
joined by either a conducting wire with resistance R (with probability p )  or by an insulator 
(with probability 1 - p ) .  This percolative disorder is meant to mimic the disordered crystal 
structure in a real polycrystalline metal film. 

When a current passes through a particular wire in the gid, electromigration occurs and 
electrical failure eventually takes place. The current I passing through this wire may vary 
with time since failures elsewhere in the system lead to current redistribution. It is natural 
to assume that the rate damage is done to the wire at time t is proportional to I Z ( t ) l .  We 
further assume that once the damage done to the wire has reached a given threshold, the 
wire fails irreversibly and becomes an insulator. The lifetime of the wire tr is therefore 
given by 
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V(0l dt = Q o .  (2) 

Equation (2) states that once a charge Qo has flowed through the wire, it fails. The 
absolute value of the current appears in the failure criterion (2) because electromigration 
damage cannot be repaired simply by reversing the current. Indeed, ac currents lead to 
electromigration failure in times comparable to DC currents of the same magnitude. 

Clearly, for a = 0 and b = 1, the more general failure criterion of Somette and Vanneste 
reduces to ours if the temperature T is replaced by the charge Q(t) = 1,' lI(t')I dr'. Note, 
however, that Somette and Vanneste did not actually study this case. As we shall see, it 
is possible to make significant progress analytically on this special case, and so it is of 
particular interest. 

The behaviour of our model for general values of p is complex. As a simple starting 
point, we study the failure of a network with p = 0. 

Let the lattice spacing of the square grid be a. We take the coordinates ( x ,  y) of the 
sites in the grid to be (n,a, (ny + $)a), where n, and ny are integers. Each bond in the 
lattice is a resistor with conductance U.  We place busbars on the rows at y = +CO and 
y = -CO. A constant voltage difference is applied across these two busbars starting at time 
t = 0, so that the vertical component of the electric field has the constant value AV/a up 
until the time the network fails. 

Clearly, in this case all of the horizontal bonds in the grid cany zero current, while each 
of the vertical bonds carries current o A V  until failure occurs. All of the vertical bonds fail 
simultaneously at time t = Qo/(uAV). 
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Now consider the next level of complexity. Suppose that at time t = 0 there is a 
single horizontal 'crack' of length 2loa, where lo is a non-negative integer. Specifically, 
we assume that initially the vertical bonds whose centres are at (na,O) with n = 
-10. -10 + 1,. ..,IO + 1,lo are broken, and that all of the other bonds in the network 
are conducting at t = 0. 

Far from the crack, the current distribution is unchanged. However, the current flowing 
through bonds close to the crack tips is increased dramatically by the presence of the crack. 
This current enhancement is largest in the two unbroken vertical resistors adjacent to the 
crack tips, and as a result, these are the first bonds to fail. The subsequent behaviour of 
the crack is less ohvious, since the failure process in our model is a cumulative effect. Our 
simulations show that at all times, the next bonds to fail are the vertical bonds immediately 
adjacent to the crack tips. Thus, the crack tips propagate laterally until network failure is 
complete. The vertical bonds with their centres at heights y # 0 and all of the horizontal 
bonds remain conducting throughout the failure process. Our simulations strongly suggest 
that these observations apply for dl values of b. 

We can readily write down an equation of motion for the crack tips. Suppose that the 
crack length is 21a at a given time, and let I (n, 1 )  denote the current flowing through the 
vertical bond with its centre at (nu, 0) at this time. Further, let tn be the time when this 
bond fails, and adopt the convention that flo = 0. Finally, we set Atn = fn+l - tn for n 2 lo. 
The equation of motion is 

where n > lo. Equation (3) simply states that the bond with its centre at (nu, 0) fails once 
the net amount of charge that has flowed through it is Qo. Note that the direction of the 
current through the vertical bonds never changes, and so it is not n i c e s s q  to write IZ(n, 1)1 
in lieu of Z(n. 1 )  in (3). 

If the initial length of the crack is large, the discrete lattice structure will have little effect 
on the crack dynamics. In the same way, if the initial length of the crack is comparable to 
the lattice spacing, the lattice structure will become unimportant once the crack has grown 
to sufficient size. In both of these cucumstances, a continuum approximation to the equation 
of motion (3) may be applied. 

In the continuum limit, the lattice spacing a tends to zero. The current density far from 
the crack j o  = aAV/a,  the initial length of the crack xo 210~. and 40 = Qo/a all tend 
to constants in this limit. Equation (3) becomes 

1 

jY(x(t) ,  x(t'))dt' = 40. . (4) 

Here 2x(t) is the length of the crack at time t and ju(x,  x') is the vertical component of the 
current density at ( x ,  0) when the crack has length 2x'. The current density &(x.  x ' )  is [3] 

2 -112 

iy (x ,  x')  = jo[  1 - (;) ] (5) 

Let u(x ,  xg) be the speed of the crack tip when the crack's length is 2n. We will now 
use (4) to determine the behaviour of u(x ,  xg) for x >> xo. Introducing the new variable of 
integration x' = x( t ' )  in (4), we have 
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Since xo is the only length scale in the problem, it makes sense to introduce the dimensionless 
widths w x'/xo. Applying these definitions and equation (5) in (6), we 
obtain 

X / X O  and w' 

(7) 

The quantity q ~ u ( x , x ~ ) / ( j ~ x o )  is a dimensionless function of x and XO. Since xo is the 
only length scale remaining in the continuum limit, qov(x, xo)/(joxo) cannot depend on x 
and xo separately-it can only depend on their ratio X / X O .  Thus, we have the scaling form 

40 -- xo dw' - .  lw ~ ( x o w ~ , x o ~ ~ ~  j o  

C .  . 
u(x,xo)  = - f - 

jox0 40 CO> 
where p is a dimensionless function of X / X O .  

To learn something of the scaling function f, we solved (6) numerically using a finite- 
difference approximation. In iigure 1, log[qov(x, xo)/( joxo)l  is plotted against log(x/xo). 
The curve rapidly becomes linear as X / X O  is increased, showing that 

f (w) - Kw' (9) 

for w >> 1. Here K is a finite, non-zero constant independent of both x and XO. Figure 1 
also shows that the exponent CY is close to 2. A linea least-squares fit to the curve for 
X / X O  2 10 yields CY = 2.001 20 f~0.00001. The error quoted here does not take into 
account the fact that the slope of the curve slowly decreases with log(x/xo). If the curve 
is fit for X / X O  2 20, for example, a value of CY still closer to 2 results. 

Inspired by these numerical results, we assume that (9) is valid, and that 1 c a e 3. 
We shall now demonstrate that once these assumptions have been made, it follows that CY 

must be exactly equal to 2. 
Let z = w'/w. Using (P), we can rewrite (7) as follows: 

(10) 
wdz - - 1. 
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We cannot simply replace f ( w z )  in this integral by Kwmza because wz is not large 
throughout the range of integration. Corrections to the asymptotic scaling form (9) must 
therefore be taken into account. By assumption, wa[f(w)]- '  tends to a finite constant K-l  
as w tends to infinity. For large but finite w,  there will be corrections to this leading-order 
behaviour. These corrections will become increasingly important as w is decreased. It is 
therefore natural to assume that 

for all w 2 1. Note that A0 = 1 / K .  Inserting (11) into (IO), we have 

To proceed further, we must analyse the integrals that appear on the left-hand side 
of (12). Using our assumption that 1 c a < 3, we obtain 

for w >> 1. Here 

1 
(1 - 821+1-a-n.0) 

is a constant. In (14), rxl denotes the smallest integer greater than or equal to x and the 
Kronecker delta S,, is 1 if m = n and is zero otherwise. Note that for the special case 
a i -n = 3, the correction term of order w ~ + " - ~  in (13) must be replaced by a term of order 
log w. 

Substituting the asymptotic form (13) in (12), we find that 

for w >> 1. Here f l  is the smaller of a and 2. We see that we must have 

= 1  A. 
g a + n - l  n=O 

and that 

CO(0r) = 0. 

Equation (17) uniquely specifies the value of a, as we shall now demonstrate. Explicitly, 
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C&) is an increasing function of a for 1 < IY c 3, and Co(2) = 0. Thus, (17) has a 
single root on the interval 1 c a c 3, and this root occurs at a = 2. We conclude that a is 
exactly 2, and that for x >> xo, 
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(18) 

As we have seen, our result a = 2 is in excellent agreement with the results of our 
numerical integration of the continuum equation of motion. We have also used the exact 
equation of motion (3) to find the tip velocity, and have verified that it agrees with our 
result (18) in the asymptotic limit [33]. 

In our model, the crack tips accelerate as the length of the crack grows. Initially, the 
crack tips do not move as damage accumulates in the network. The crack tips move with 
increasing speed after the first bonds are broken. This acceleration occurs because the 
current crowding at the crack tips becomes more marked with the passage of time, and 
because the damage to the bonds is cumulative. 

We handled the lower limit of integration with special care in our analysis of our 
equation of motion (6). Care was needed because when x > XO, the dominant contribution 
to the integral comes from x' close to XO. This can be understood both from a mathematical 
and from a physical standpoint. We begin with the formal demonstration. The integrand in 
(13) has a non-integrable singularity at z = 0. As a result, the dominant contribution to this 
integral comes from z close to l/w, that is, from x' close to X O .  The same is also true of 
the equation of motion (10). We now turn to our heuristic explanation. Because the crack 
tips move slowly at first and then accelerate, most of the charge needed to break a bond 
flows through it while the crack tip is still far away. We again conclude that the dominant 
contribution to the integral on the left-hand side of (6) comes from x' relatively close to XO. 

Now that we know the asymptotic behaviour of u(x, XO). we can integrate to find the 
time dependence of the tip location x for x >> XO. Clearly, 

- Kjox2 v ( x , x o )  = - . 
40x0 

(19) 
dx' 

t = s ,  -. 
Inserting (8) and (11) in (19) and using the result a = 2, we obtain 

For x >> XO. this becomes 

where we have employed (16) and the fact that a = 2. Finally, we have the desired result: 
for x >> xo 

Interestingly, (20) shows that the time to failure in the presence of the crack is qo/jo. This 
is the time it takes a defect-free film to fail, and so the presence of the crack does not reduce 
the lifetime of an infinitely large film. For a tinitesize film, of course, the lifetime will 
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always be reduced by the presence of a crack. What we have shown is that this reduction 
tends to zero in the limit in which the film dimensions become large compared with the 
initial length of the crack. 

When p is small but non-zero, there are multiple cracks present in ow model. The 
interactions between these cracks will be negligible at early times, and each crack will 
have a tip velocity v ( x )  that grows as x2.  At later times, crack-zrack interactions 
become increasingly important, and cracks begin to coalesce as well as to grow. In future 
publications, we will develop a theory for the late stages of the electromigation process, 
and compare the results of this theory with our Monte Carlo simulations [33]. We are also 
exploring the possibility that our theory can be extended to yield the asymptotic behaviour 
of a crack in the dynamical thermal fuse model with arbitrary values of a and b. 
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